VHLPX2-18/D

Base Product

0.6 m | 2 ft ValuLine® High Performance Antenna, dual polarized, 17.700 - 19.700 GHz

Product Classification

Product Type
Product Brand

General Specifications

Antenna Type

Polarization
Side Struts, Included
Side Struts, Optional
Dimensions
Diameter, nominal

Electrical Specifications

Operating Frequency Band

Gain, Low Band
Gain, Mid Band
Gain, Top Band
Boresite Cross Polarization Discrimination (XPD)
Front-to-Back Ratio
Beamwidth, Horizontal
Beamwidth, Vertical
Return Loss
VSWR
Radiation Pattern Envelope Reference (RPE)
Electrical Compliance

67 dB
2.1° 2.1°
17.7 dB

Microwave antenna
ValuLine ${ }^{\circledR}$

VHLPX - ValuLine® High Performance Low Profile Antenna, dualpolarized

Dual
0
0
$0.6 \mathrm{~m} \mid 2 \mathrm{ft}$
$17.700-19.700 \mathrm{GHz}$
38.6 dBi

39 dBi
39.4 dBi

30 dB
1.3

7216D
ACMA FX03_18a | Brazil Anatel Class 3 | Canada SRSP 317.8 Part A | ETSI 302217 Class 3 | US FCC Part 101A

VHLPX2-18/D

Mechanical Specifications

Compatible Mounting Pipe Diameter

Fine Azimuth Adjustment Range
Fine Elevation Adjustment Range
Wind Speed, operational
Wind Speed, survival
$48 \mathrm{~mm}-120 \mathrm{~mm}$ | $1.9 \mathrm{in}-4.7$ in
$\pm 15^{\circ}$
$\pm 15^{\circ}$
201 km/h | 124.896 mph
252 km/h | 156.585 mph

Antenna Dimensions and Mounting Information

Dimensions in Inches (mm)				
Antenna Size, ft (m)	A	B	C	D
$2(0.6)$	$25.9(660)$	$12.2(310)$	$8.9(228)$	$1.8(45)$

Wind Forces at Wind Velocity Survival Rating

VHLPX2-18/D

Angle a for MT Max

Side Force (FS)
Twisting Moment (MT)
Zcg without Ice
Zcg with 1 in ($\mathbf{2 5} \mathbf{~ m m}$) Radial Ice
Weight with 1 in (25 mm) Radial Ice
-50°
-350 N | -78.683 lbf
$500 \mathrm{~N}-\mathrm{m} \mid 4,425.373 \mathrm{in} \mathrm{lb}$
55 mm | 2.165 in
91 mm | 3.583 in
$20 \mathrm{~kg} \mathrm{\mid} 44.092 \mathrm{lb}$

Wind Forces at Wind Velocity Survival Rating Image

Packaging and Weights

Weight, net

6.7 kg | 14.771 lb

Regulatory Compliance/Certifications

Agency

ISO 9001:2015

* Footnotes

Gain, Mid Band

Classification

Designed, manufactured and/or distributed under this quality management system

Operating Frequency Band
Bands correspond with CCIR recommendations or common allocations used throughout the world. Other ranges can be accommodated on special order.

For a given frequency band, gain is primarily a function of antenna size.

VHLPXZ-18/D

Boresite Cross Polarization Discrimination (XPD)

Front-to-Back Ratio

Return Loss

VSWR

Radiation Pattern Envelope Reference (RPE)

Wind Speed, operational

Wind Speed, survival

Axial Force (FA)

Side Force (FS)

Twisting Moment (MT)

The gain of Andrew antennas is determined by either gain by comparison or by computer integration of the measured antenna patterns.

The difference between the peak of the co-polarized main beam and the maximum cross-polarized signal over an angle twice the 3 dB beamwidth of the co-polarized main beam.

Denotes highest radiation relative to the main beam, at $180^{\circ} \pm 40^{\circ}$, across the band. Production antennas do not exceed rated values by more than 2 dB unless stated otherwise.

The figure that indicates the proportion of radio waves incident upon the antenna that are rejected as a ratio of those that are accepted.

Maximum; is the guaranteed Peak Voltage-Standing-Wave-Ratio within the operating band.

Radiation patterns define an antenna's ability to discriminate against unwanted signals. Under still dry conditions, production antennas will not have any peak exceeding the current RPE by more than 3dB, maintaining an angular accuracy of $+/-1^{\circ}$ throughout

For VHLP $(X), \operatorname{SHP}(X), H X$ and USX antennas, the wind speed where the maximum antenna deflection is 0.3 x the 3 dB beam width of the antenna. For other antennas, it is defined as a deflection is equal to or less than 0.1 degrees.

The maximum wind speed the antenna, including mounts and radomes, where applicable, will withstand without permanent deformation. Realignment may be required. This wind speed is applicable to antenna with the specified amount of radial ice.

Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Maximum side force exerted on the mounting pipe as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

Maximum forces exerted on a supporting structure as a result of wind from the most critical direction for this parameter. The individual maximums specified may not occur simultaneously. All forces are referenced to the mounting pipe.

