Dual Band Tower Mounted Amplifier, 1800/2100 MHz with 1400 MHz bypass, 12 dB, 2 BTS & 2 ANT ports, AISG with 1 RET connector (2 devices with 2 sub-units each), with 4.3-10 connectors

- Industry leading PIM performance
- New 4.3-10 connectors for improved PIM performance and size reduction
- Designed for network modernization application, introduction of LTE1400 on existing site
- TMA with 1452-1492 MHz bypass
- 2 input ports and 2 output ports
- Automatic LNA by-pass function
- Built in lightning protection
- Connectors "in line"
- Single AISG with 1 RET connector
- 2 devices with 2 sub-units

Product Classification

Product Type

1-BTS:1-ANT (Uniplex) | Tower mounted amplifier

General Specifications

Color

Gray

Modularity

2-Twin

Mounting

Pole | Wall

Mounting Pipe Hardware

Band clamps (2)

RF Connector Interface

4.3-10 Female

Dimensions

Height

280 mm | 11.024 in

Width

175 mm | 6.89 in

Depth

98 mm | 3.858 in

Mounting Pipe Diameter Range

50–120 mm
Outline Drawing

Electrical Specifications

License Band, Band Pass
SDL 1400

License Band, LNA
DCS 1800 | IMT 2100 | IMT 2600

Electrical Specifications, dc Power/Alarm

dc Switching/Redundancy
Yes

Lightning Surge Current
10 kA

Lightning Surge Current Waveform
8/20 waveform

Voltage
7–30 Vdc

Alarm Current, CWA Mode
190 mA ±15 mA
Electrical Specifications, AISG

AISG Connector
8-pin DIN Female

AISG Connector Standard
IEC 60130-9

Protocol
AISG 2.0

Voltage, AISG Mode
10–30 Vdc

Electrical Specifications

<table>
<thead>
<tr>
<th>Sub-module</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Port Designation</td>
<td>ANT</td>
<td>ANT</td>
<td>ANT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>License Band</td>
<td>SDL 1400, Band Pass</td>
<td>DCS 1800, LNA</td>
<td>IMT 2100, LNA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return Loss - Bypass Mode, typical, dB
16

Electrical Specifications Rx (Uplink)

Frequency Range, MHz
1710–1785

Bandwidth, MHz
75

Gain, nominal, dB
12

Noise Figure, typical, dB
1.7

Output IP3, minimum, dBm
12

Return Loss, minimum, dB
18

Insertion Loss - Bypass Mode, typical, dB
2.5

Electrical Specifications Tx (Downlink)

Frequency Range, MHz
1805–1880

Bandwidth, MHz
60

Insertion Loss, typical, dB
0.3

Return Loss, minimum, dB
18

Input Power, RMS, maximum, W
200

Input Power, PEP, maximum, W
1000

3rd Order PIM, typical, dBc
-162

3rd Order PIM Test Method
Two +43 dBm carriers

Electrical Specifications, Band Pass

Frequency Range, MHz
1452–1492

Insertion Loss, typical, dB
0.35
<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Loss, minimum, dB</td>
<td>18</td>
</tr>
<tr>
<td>Input Power, RMS, maximum, W</td>
<td>200</td>
</tr>
<tr>
<td>Input Power, PEP, maximum, W</td>
<td>100</td>
</tr>
<tr>
<td>3rd Order PIM, typical, dBC</td>
<td>-162</td>
</tr>
<tr>
<td>3rd Order PIM Test Method</td>
<td>Two +43 dBm carriers</td>
</tr>
</tbody>
</table>
Block Diagram

<table>
<thead>
<tr>
<th>Mechanical Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Speed, maximum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
</tr>
<tr>
<td>Relative Humidity</td>
</tr>
<tr>
<td>Corrosion Test Method</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packaging and Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included</td>
</tr>
<tr>
<td>Volume</td>
</tr>
<tr>
<td>Weight, net</td>
</tr>
</tbody>
</table>

Footnotes

- **License Band, Band Pass** | License Bands that are to be passed through with no amplification
- **License Band, LNA** | License Bands that have RxUplink amplification